
Perceptual learning: specificity versus generalization
Manfred Fahle
Perceptual learning improves performance on many tasks,

from orientation discrimination to the identification of faces.

Although conventional wisdom considered sensory cortices

as hard-wired, the specificity of improvement achieved

through perceptual learning indicates an involvement of early

sensory cortices. These cortices might be more plastic than

previously assumed, and both sum-potential and single cell

recordings indeed demonstrate plasticity of neuronal

responses of these sensory cortices. However, for learning to

be optimally useful, it must generalize to other tasks. Further

research on perceptual learning should therefore, in my

opinion, investigate first, the conditions for generalization of

training-induced improvement, second, its use for teaching

and rehabilitation, and third, its dependence on

pharmacological agents.
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Introduction: perceptual learning
Perceptual learning (PL) is defined as a change of per-

formance, usually an improvement, as a result of training.

The improvement tends to persist over weeks and

months, distinguishing it from sensitization, habituation

and priming (see glossary) that all show more transient

changes in performance. Perceptual learning is often

quite specific for the exact task trained and does not lead

to conscious insights that can be easily communicated;

hence, it is of the procedural or implicit type. Many forms

of PL change the cortical circuits solving the perceptual

task trained, unlike episodic and factual memory, which

seem to be stored in brain areas that are not directly

involved in the analysis of the sensory signals.

The past couple of years, covered by this review, saw

increased activity in the field of PL as is evident from the
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volume of published material (several hundred publica-

tions) that has appeared on this topic during that time.

One important topic is the question of how specific the

improvement achieved through learning is, and how

much it can generalize (see glossary). This question is

closely related to the question of what cortical changes

underlie the behavioral improvement. Given the fact that

‘early’ stages of processing tend to be more specific for

low level features such as position and orientation of a

stimulus, a high specificity of PL, that is, a low degree of

transfer to other orientations or positions fits better with a

neuronal substrate at early cortical levels. Generalization

of improvement across different stimulus positions and

orientations, conversely, is more compatible with a higher

level of neuronal plasticity, because these levels tend

to generalize over stimulus position and orientation.

Because it is notoriously difficult to pinpoint the location

of neuronal changes by means of psychophysical experi-

ments, the results of electrophysiological and imaging

studies are reviewed wherever such studies are available.

The results show an involvement of early sensory cortices

in PL and indicate the important role of feedback con-

nections from ‘higher’ to ‘lower’ levels of processing. The

next steps will be to gain a better understanding of under

which training conditions improvement generalizes, can

be used for visual rehabilitation, and might be influenced

pharmacologically. In this review, recent psychophysical,

electrophysiological, pharmacological and computational

studies of perceptual learning are reviewed with special

emphasis on the dichotomy between specificity and gen-

eralization of improvement.

Reviews on perceptual learning
The vitality of the PL field is mirrored not only in the

large number of original articles but also in several

reviews dealing with different aspects of PL. The most

comprehensive summary of PL up to 2002 is to be found

in Fahle and Poggio [1]; the introduction of the book

reviews the literature up to that year. Unfortunately,

there are often large differences both between the results

of different studies and between individuals [2]. In order

to make comparisons across different studies, improve-

ment based on training was converted to a common

measure, d’. It transpires that several factors, such as task

complexity, strongly affect the speed of PL [3].

The reverse hierarchy theory of PL (see glossary) outlines

a general framework for perceptual learning on different

neuronal levels. The theory assumes that learning starts at

high cortical areas (where it generalizes) and progresses

backwards towards lower levels if necessary (where it is
www.sciencedirect.com
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Glossary

Amblyopes: Patients suffering from a, sometimes strongly, reduced

visual acuity even after complete correction of refractive errors, and

despite having a normal retina and optic nerve. Often, amblyopia is

caused by a squint, with one eye effectively ‘switched off’ during

infancy and childhood.

Early selection theory: The hypothesis that in PL irrelevant signals

should be eliminated as early as possible during cortical information

processing. Hence PL might change processing at rather ‘early’

stages of cortical signal processing, in analogy to the early selection

theory of attention.

Gabor-patch: Usually a small round patch with blurred edges,

containing a sinewave grating, that is, a pattern of blurred stripes.

Generalization: The transfer of an improvement achieved through

training to other similar stimuli. The improvement generalizes to the

new stimuli.

Habituation: A special case of adaptation, namely, a shift of

sensitivity (working range of the sensory system) towards lower levels,

as in the case of a less pronounced reflex response after prolonged

stimulation. (This is the opposite of sensitisation.)

Late selection theory: The hypothesis that in PL irrelevant signals

should be eliminated at a relatively late stage of cortical information

processing, leaving peripheral cortices unchanged. According to

this theory, PL mainly relies on selection of the most suitable signals

at late stages of cortical signal processing, in analogy to the late

selection theory of attention.

Non-words: Strings of (ordinary) letters that do not form (English)

words.

Orientation bandwidth (halfwidth): The difference in stimulus

orientation required for an effect to decrease to half its strength.

For example, if an observer adapts to a grating stimulus, the

orientation halfwidth indicates how much the grating has to be rotated

in order for the adaptation to decrease to half of its strength at the

adapted orientation.

Priming: The effect of a (sometimes very faint) preceding stimulus

on the reception and perception of another stimulus, usually

presented with temporal proximity.

Reverse hierarchy theory of PL: The theory that easy conditions

guide the learning of difficult ones. Improvement begins at higher

cortical levels and proceeds to lower-levels if necessary. The

theory was originally proposed by Ahissar and Hochstein [64].

Sensitisation: A transient increase in sensitivity as a result of

stimulation, for example lower thresholds for pain shortly after a

painful stimulus. (This is the opposite of habituation.)

Sum potentials: Electric or magnetic potentials that can be recorded

outside the skull, representing the joint (and synchronized) activity

of large neuronal networks in the brain. Examples are the EEG and

event related potentials (ERP).

Visual span: The range around the center of gaze where letters are

recognized. Visual span profiles plot the accuracy of letter recognition

as a function of horizontal distance from the midline.
specific). A recent review by Ahissar and Hochstein

summarizes evidence supporting this theory [4]. A

slightly different view contrasts an early selection theory

(see glossary) of PL with a late selection theory (see

glossary), in analogy to theories on attention, and argues

that selection should occur as early as possible to optimize

the signal-to-noise ratio [5]. In this respect, perceptual

and motor learning are similar and might both rely on

changes in neuronal tuning functions [6]. Generalization

is at the heart of useful learning in both systems [7], and

apparently relies on strong top-down influences [8]. The

neuronal correlate of PL is best investigated by electro-

physiological studies, as reviewed by Ghose [9].
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The consensus seems to be that PL occurs at different

processing levels, with different speeds, and is subject to

top-down influences. The specificity of learning might

differ among sensory modalities, so a discussion themed

by modality appears to be the most appropriate way to

approach the subject.

Perceptual learning in the visual domain:
specificity
A prominent aspect of PL that is studied in psychophysical

experiments is the specificity of the improvement

on stimulus orientation. The orientation bandwidth (see

glossary) of orientation selective mechanisms and their

improvement as a result of training is investigated by

rotating a stimulus after the training phase and by testing

the amount of transfer to other stimulus orientations [10�].
The orientation specificity of PL certainly is much smaller

than the bandwidth of early orientation-selective filters,

which serves as another argument for top-down influences

shaping the peripheral filters in a task-dependent way [5].

Even luminance contrast detection improves through

training, and generalizes across orientations. This finding

is surprising given the fact that humans should be over-

trained for contrast detection through everyday life, espe-

cially under low illuminances [11]. Obviously, training of

some tasks is orientation-specific, whereas generalization

occurs in others.

PL is specific for several hitherto not or rarely examined

stimulus parameters, such as motion-speed and motion-

direction [12]. Motion discrimination improves even with

‘paired-dots’ stimuli that are supposed not to activate

cortical middle temporal area (MT) [13]. Improvement of

observers training on a shape discrimination task based on

luminance contrast transfers to the detection of a shape

defined by temporal structure, whereas it does not the

other way round [14], and improvement with a visually

masked stimulus is specific for the mask [15].

Perceptual learning in the visual domain:
generalization and context
Often, improvement achieved through PL generalizes

more for complex tasks than for simpler ones. Playing

action video games indeed seems to generalize to other

tasks [16�], and in visual search, both specific features and

a global search strategy are learned [17]. Visual training

through reading text seems to modify the way people

perceive printed words: reading-related training improves

perception of words but not of non-words (see glossary)

[18]. Moreover, the size of the visual span (see glossary)

expands through training, with an associated increase in

maximum reading speed [19�]. These results encourage

the use of PL in visual rehabilitation.

There is a controversy regarding the importance of con-

text on PL. Initially, evidence indicated that detection of
Current Opinion in Neurobiology 2005, 15:154–160
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The population response of neurons in monkey area V1 to identical

stimuli. Normalized and averaged post-stimulus time histograms

showing the time course of induced activation when the stimulus

was task relevant versus when it was not. The difference between

task relevant and task-irrelevant responses could be both positive

(a) and negative (b), but it always started with the response proper.

(Used with permission from Nature Publishing Group, from Li et al.

[27��].)
a Gabor patch (see glossary) improved by practicing

specifically in the presence of similar patches placed

laterally [20,21]. However, learning and improvement

on a task can occur without the stimulus being in the

specific task context [22�]. These results enable insights

into the organization of visual perception; generalization

of improvement indicates that different tasks employ at

least partly identical neuronal mechanisms.

Perceptual learning in the visual domain:
physiology
More than ten years ago, a study [23] found changes in

early event-related sum potentials (see glossary) of

humans as a result of PL, and several others corroborated

the basic finding of training-induced changes in evoked

potentials [24,25].

Training on an orientation discrimination task surpris-

ingly decreases the number of neurons that represent the

trained orientation in primary visual cortex (V1) of mon-

keys, without any evident changes in receptive field

properties [9]. However, neurons in V4 with receptive

fields in the trained region of the visual field narrow their

orientation tuning and increase responses as a result of

training [26]. Moreover, neurons in V1 change not only

their contextual influences but also their classical recep-

tive field properties depending on the animal’s actual

task, optimizing the information on the relevant stimulus

feature under top-down influence (Figure 1; [27��]).
Similarly, neurons in infero-temporal cortex can show

target selective neuronal responses during visual search

[28].

Neurons in V4 respond more vigorously to noisy images

the monkey had been trained with than to untrained

images containing the same amount of noise [29�]. Hence,

training improves both perception and single cell

responses that are noise-specific. In humans, training of

visual texture discrimination increases activity in the

corresponding quadrant of the visual field representation

in V1 as demonstrated by fMRI [30].

Learning in audition, in somatosensation
and in olfaction
The fast improvement with training not only in visual but

also auditory tasks is, at least in tone frequency discrimina-

tion, mostly because of perceptual learning, and only

marginally because of procedural learning of the task

[31]. Discrimination of temporal intervals is relatively

specific for interval length, but generalizes to other spectral

frequencies [32]. Similar to the situation in the visual

system, noise is eliminated at an early level; hence loss

of efferent feedback (to the cochlea) degrades auditory

perception in noise [33]. Extensive learning of the dis-

crimination between ‘r’ and ‘l’ by native Japanese speakers

activates several cortical and subcortical areas, indicative of

modified sensory–motor connections [34,35].
Current Opinion in Neurobiology 2005, 15:154–160
Whereas neurons in primary auditory cortex (A1) of rats

change responses after training in a ‘sound-maze’ [36],

cortical organization in A1 of cats is largely unchanged by

training of a frequency discrimination task [37].

Professional musicians are faster in responding to a

tactile co-activation task than non-musicians [38], indi-

cating higher plasticity in ‘trained’ subjects. Hebbian co-

activation by transcranial magnetic cortical stimulation

with tactile stimulation improves tactile discrimination

ability [39], and tactile co-activation induces significant
www.sciencedirect.com
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Olfactory learning might rely on changes in the odorant

receptive fields of second and/or third order olfactory

neurons of animals, hence again on a relatively peripheral

level of processing, leading to the synthesis of experi-

ence-dependent receptive fields as a result of PL [44,45].

Consolidation of learning and visual
rehabilitation of patients
New experimental data have broadened the evidence

that consolidation of improvement achieved through

PL requires sleep [46–49]. Both sleep and restful waking

facilitate auditory tone learning [47]. Auditory training

with a small number of words improves performance with

these words and generalizes to novel words using the

same phonemes but with different acoustic patterns.

Sleep consolidates improvement in a spoken-language

task [48] and the automaticity in an auditory discrimina-

tion task [49]. Training identification of vowels also

improves performance and enhances amplitude of

evoked potentials, decreasing their latency [50]. Finally,

patients wearing a cochlear implant learn to partially

adjust to changes in frequency-to-electrode assignment

[51]. Unilateral lesions in macaques, conversely, severely

disrupt learning and performance in a visual match-to-

sample task [52�].
Figure 2
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Amblyopes (see glossary) are clearly benefiting from PL.

Training improves contrast sensitivity of amblyopic eyes

by about a factor of two (Figure 2; [53��]), and increases

their acuity significantly [53��,54,55].

Neuronal mechanisms of perceptual learning:
models and pharmacology
The steadily increasing amount of data and number

of insights in PL enables the formulation of ever-improv-

ing models of PL, incorporating both specificity and
M
ea

n 
di

sc
rim

in
at

io
n 

th
re

sh
ol

d 
 [m

m
]  

M
ea

n 
di

sc
rim

in
at

io
n 

th
re

sh
ol

d 
 [m

m
]  

Memantine
n=18

Right IF Left IF

**
p<0.0001

Pre Post Pre PostRec
1.2

1.4

1.6

1.8

1.2

1.4

1.6

1.8

Session Session

1.2

1.4

1.6

1.8

2.0

1.2

1.4

1.6

1.8

2.0

Pre Post PostPreRec
Session Session

Mean somatosensory discrimination thresholds in humans improve

significantly from before (‘pre’) to after (‘post’) training, at least under

placebo and for the right index finger (IF) used for co-activation.

Amphetamine increases the improvement for the trained side only

while memantine prevents any change. No effects were found after a

24h interval (‘rec’). (Used with permission from Science, from Dinse

et al. [61��].)
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generalization of learning [56–59]. Important features of

these models are the implementation of recurrent (feed-

back) connections [56,57], incorporating internal and

external noise [57], and assessing the change of internal

templates [58,59]. The models show that first, the

reported sharpening of orientation tuning curves can

account for the psychophysical data [56], second, PL

seems to improve elimination of external noise, and

third, it does this by retuning the internal templates

[58,59].

The neuronal networks modified by PL are influenced by

pharmacological agents [60,61��,62], and by transcranial

magnetic stimulation [63]. For example, improvement by

co-activation in tactile two-point discrimination is elimi-

nated by lorazepam, a g-aminobutyric acid (GABA)

receptor agonist [60], and by memantine, which blocks

N-methyl-D-aspartate (NMDA) receptors [61��]. Amphe-

tamine, however, increases the improvement observed

with PL (Figure 3; [61��]). Acetylcholine seems to play a

crucial role in plasticity of the olfactory system and to

modulate olfactory PL [62].

Conclusions
Perceptual learning is often highly specific for rather low-

level features of stimuli, such as their orientation. To

achieve optimal performance, especially for this type of

feature, irrelevant signals and noise have to be eliminated

as early as possible during processing. To prevent inter-

ference of learning one task with performance in other

tasks, the changes achieved on early levels have to be

activated, in a task-dependent way, by top-down signals.

Easier tasks do not have to involve the early processing

levels, and hence improvement generalizes.

Given the task-dependence of some of the neuronal

changes, it is difficult to find the exact neuronal correlates

of PL using electrophysiology. Still, several positive

reports are available, even on the single-cell level.

Finally, the role of different neurotransmitters in PL is

slowly emerging, along with applications created to help

rehabilitation training in patients. Research in recent

years has shown that perceptual learning improves per-

formance in nearly all tasks investigated so far, and that

features of vastly differing complexity can be learnt,

ranging from straightforward contrast discrimination to

detecting complex patterns such as x-rays of bombs

hidden in suitcases. The underlying changes of the cen-

tral nervous system can involve even early sensory cor-

tices. It will be important to further clarify the neuronal

mechanisms underlying perceptual learning — including

the influence of drugs — and to try to use the resulting

knowledge for the rehabilitation of patients suffering from

sensory deficits, especially in the case of stroke patients.
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